Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway.

Identifieur interne : 000B69 ( Main/Exploration ); précédent : 000B68; suivant : 000B70

Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway.

Auteurs : Alicia Izquierdo [Espagne] ; Celia Casas ; Ulrich Mühlenhoff ; Christopher Horst Lillig ; Enrique Herrero

Source :

RBID : pubmed:18503006

Descripteurs français

English descriptors

Abstract

Saccharomyces cerevisiae Grx6 and Grx7 are two monothiol glutaredoxins whose active-site sequences (CSYS and CPYS, respectively) are reminiscent of the CPYC active-site sequence of classical dithiol glutaredoxins. Both proteins contain an N-terminal transmembrane domain which is responsible for their association to membranes of the early secretory pathway vesicles, facing the luminal side. Thus, Grx6 localizes at the endoplasmic reticulum and Golgi compartments, while Grx7 is mostly at the Golgi. Expression of GRX6 is modestly upregulated by several stresses (calcium, sodium, and peroxides) in a manner dependent on the Crz1-calcineurin pathway. Some of these stresses also upregulate GRX7 expression under the control of the Msn2/4 transcription factor. The N glycosylation inhibitor tunicamycin induces the expression of both genes along with protein accumulation. Mutants lacking both glutaredoxins display reduced sensitivity to tunicamycin, although the drug is still able to manifest its inhibitory effect on a reporter glycoprotein. Grx6 and Grx7 have measurable oxidoreductase activity in vivo, which is increased in the presence of tunicamycin. Both glutaredoxins could be responsible for the regulation of the sulfhydryl oxidative state at the oxidant conditions of the early secretory pathway vesicles. However, the differences in location and expression responses against stresses suggest that their functions are not totally overlapping.

DOI: 10.1128/EC.00133-08
PubMed: 18503006
PubMed Central: PMC2519769


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway.</title>
<author>
<name sortKey="Izquierdo, Alicia" sort="Izquierdo, Alicia" uniqKey="Izquierdo A" first="Alicia" last="Izquierdo">Alicia Izquierdo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casas, Celia" sort="Casas, Celia" uniqKey="Casas C" first="Celia" last="Casas">Celia Casas</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18503006</idno>
<idno type="pmid">18503006</idno>
<idno type="doi">10.1128/EC.00133-08</idno>
<idno type="pmc">PMC2519769</idno>
<idno type="wicri:Area/Main/Corpus">000B85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B85</idno>
<idno type="wicri:Area/Main/Curation">000B85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B85</idno>
<idno type="wicri:Area/Main/Exploration">000B85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway.</title>
<author>
<name sortKey="Izquierdo, Alicia" sort="Izquierdo, Alicia" uniqKey="Izquierdo A" first="Alicia" last="Izquierdo">Alicia Izquierdo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casas, Celia" sort="Casas, Celia" uniqKey="Casas C" first="Celia" last="Casas">Celia Casas</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
<author>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</analytic>
<series>
<title level="j">Eukaryotic cell</title>
<idno type="eISSN">1535-9786</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA-Binding Proteins (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Endoplasmic Reticulum (ultrastructure)</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Gene Expression Regulation, Fungal (physiology)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glycosylation (drug effects)</term>
<term>Golgi Apparatus (metabolism)</term>
<term>Golgi Apparatus (ultrastructure)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Secretory Vesicles (genetics)</term>
<term>Secretory Vesicles (metabolism)</term>
<term>Secretory Vesicles (ultrastructure)</term>
<term>Signal Transduction (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antienzymes (pharmacologie)</term>
<term>Appareil de Golgi (métabolisme)</term>
<term>Appareil de Golgi (ultrastructure)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glycosylation (effets des médicaments et des substances chimiques)</term>
<term>Oxidoreductases acting on sulfur group donors (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes fongiques (physiologie)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Réticulum endoplasmique (ultrastructure)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Transduction du signal (génétique)</term>
<term>Vésicules de sécrétion (génétique)</term>
<term>Vésicules de sécrétion (métabolisme)</term>
<term>Vésicules de sécrétion (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Glutaredoxins</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Glycosylation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Glycosylation</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Secretory Vesicles</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
<term>Vésicules de sécrétion</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Golgi Apparatus</term>
<term>Saccharomyces cerevisiae</term>
<term>Secretory Vesicles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Facteurs de transcription</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Réticulum endoplasmique</term>
<term>Saccharomyces cerevisiae</term>
<term>Vésicules de sécrétion</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antienzymes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Golgi Apparatus</term>
<term>Secretory Vesicles</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Appareil de Golgi</term>
<term>Réticulum endoplasmique</term>
<term>Vésicules de sécrétion</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Saccharomyces cerevisiae Grx6 and Grx7 are two monothiol glutaredoxins whose active-site sequences (CSYS and CPYS, respectively) are reminiscent of the CPYC active-site sequence of classical dithiol glutaredoxins. Both proteins contain an N-terminal transmembrane domain which is responsible for their association to membranes of the early secretory pathway vesicles, facing the luminal side. Thus, Grx6 localizes at the endoplasmic reticulum and Golgi compartments, while Grx7 is mostly at the Golgi. Expression of GRX6 is modestly upregulated by several stresses (calcium, sodium, and peroxides) in a manner dependent on the Crz1-calcineurin pathway. Some of these stresses also upregulate GRX7 expression under the control of the Msn2/4 transcription factor. The N glycosylation inhibitor tunicamycin induces the expression of both genes along with protein accumulation. Mutants lacking both glutaredoxins display reduced sensitivity to tunicamycin, although the drug is still able to manifest its inhibitory effect on a reporter glycoprotein. Grx6 and Grx7 have measurable oxidoreductase activity in vivo, which is increased in the presence of tunicamycin. Both glutaredoxins could be responsible for the regulation of the sulfhydryl oxidative state at the oxidant conditions of the early secretory pathway vesicles. However, the differences in location and expression responses against stresses suggest that their functions are not totally overlapping.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18503006</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-9786</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Eukaryotic cell</Title>
<ISOAbbreviation>Eukaryot Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>1415-26</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/EC.00133-08</ELocationID>
<Abstract>
<AbstractText>Saccharomyces cerevisiae Grx6 and Grx7 are two monothiol glutaredoxins whose active-site sequences (CSYS and CPYS, respectively) are reminiscent of the CPYC active-site sequence of classical dithiol glutaredoxins. Both proteins contain an N-terminal transmembrane domain which is responsible for their association to membranes of the early secretory pathway vesicles, facing the luminal side. Thus, Grx6 localizes at the endoplasmic reticulum and Golgi compartments, while Grx7 is mostly at the Golgi. Expression of GRX6 is modestly upregulated by several stresses (calcium, sodium, and peroxides) in a manner dependent on the Crz1-calcineurin pathway. Some of these stresses also upregulate GRX7 expression under the control of the Msn2/4 transcription factor. The N glycosylation inhibitor tunicamycin induces the expression of both genes along with protein accumulation. Mutants lacking both glutaredoxins display reduced sensitivity to tunicamycin, although the drug is still able to manifest its inhibitory effect on a reporter glycoprotein. Grx6 and Grx7 have measurable oxidoreductase activity in vivo, which is increased in the presence of tunicamycin. Both glutaredoxins could be responsible for the regulation of the sulfhydryl oxidative state at the oxidant conditions of the early secretory pathway vesicles. However, the differences in location and expression responses against stresses suggest that their functions are not totally overlapping.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Izquierdo</LastName>
<ForeName>Alicia</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casas</LastName>
<ForeName>Celia</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mühlenhoff</LastName>
<ForeName>Ulrich</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lillig</LastName>
<ForeName>Christopher Horst</ForeName>
<Initials>CH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herrero</LastName>
<ForeName>Enrique</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Eukaryot Cell</MedlineTA>
<NlmUniqueID>101130731</NlmUniqueID>
<ISSNLinking>1535-9786</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C532450">GRX7 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C527470">Grx6 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081935">MSN2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="D050862">Oxidoreductases Acting on Sulfur Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="C080499">sulfide oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050862" MajorTopicYN="N">Oxidoreductases Acting on Sulfur Group Donors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022142" MajorTopicYN="N">Secretory Vesicles</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
<ArticleId IdType="pii">EC.00133-08</ArticleId>
<ArticleId IdType="doi">10.1128/EC.00133-08</ArticleId>
<ArticleId IdType="pmc">PMC2519769</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Oct;14(10):4296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Jan 15;377(Pt 2):395-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14519092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2005 Dec;3(12):669-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Feb 2;164(3):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 13;279(7):5257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 16;281(24):16551-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Aug;21(11):947-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15334558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Dec 30;74(2):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1993 Aug;9(8):875-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8212895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Nov;131(4):895-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7490292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 1997 Jun;7(4):481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9184828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1997 Jun 30;137(7):1469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9199164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Dec 1;16(23):7196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9384596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Feb 15;26(4):942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 May;9(5):1081-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jan 6;1426(2):297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Apr;15(6):507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jan;6(1):28-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 6;330(2):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:739-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Jan;11(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16371132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(3):765-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16420350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Mar;7(3):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Sep 1;398(2):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 8;281(36):26280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:457-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Feb 9;353(2):293-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17187761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2007 Mar;14(3):586-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16858427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2007 Mar;71(3):633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17341827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2007;80:261-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17445699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2008 Feb;25(2):93-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 1999 Jul;1(3):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Apr 28;101(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10847680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2000 Oct;24(4):469-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Feb;11(1):120-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2001 Jun;13(3):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11343907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2001;35:647-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11700296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 May 15;21(10):2343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12006487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):31079-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12058033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Nov;46(3):869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 4;278(14):12554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12551906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 20;278(25):22492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684511</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Casas, Celia" sort="Casas, Celia" uniqKey="Casas C" first="Celia" last="Casas">Celia Casas</name>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
<name sortKey="Lillig, Christopher Horst" sort="Lillig, Christopher Horst" uniqKey="Lillig C" first="Christopher Horst" last="Lillig">Christopher Horst Lillig</name>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Izquierdo, Alicia" sort="Izquierdo, Alicia" uniqKey="Izquierdo A" first="Alicia" last="Izquierdo">Alicia Izquierdo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18503006
   |texte=   Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18503006" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020